Strain-Dependent Rheological Model and Pressure Wave Prediction for Shut in and Restart of Waxy Oil Pipelines

2014 
Waxy oil gelation and rheology is investigated and modeled using strain-dependent viscosity correlations. Rotational rheometry shows a sharp viscosity increase upon gel formation. High creeping flow viscosities are observed at small deformation conditions prior to yielding. A new strain-dependent rheological model, following analogous formulation to the Carreau–Yasuda shear rate-dependent model, captures viscosity reduction associated with yielding. In addition, shear viscosity and extensional viscosity are investigated using a capillary rheometry method. Distinct shear-thinning behavior is observed in the shear mode of deformation, while distinct tension-thinning behavior is observed in the extensional mode of deformation for the model fluid systems. High Trouton ratios are obtained for the gelled model fluid systems, confirming strongly non-Newtonian fluid rheology. Finally, axial pressure wave profiles are computed at real pipeline dimensions for idealized moderate yield stress fluids using a computati...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    3
    Citations
    NaN
    KQI
    []