Melting of magnesium oxide up to two terapascals using double-shock compression

2021 
Constraining the melting behavior of magnesium oxide, a major constituent of gaseous and rocky planets, is key to benchmarking their evolutionary models. Using a double-shock technique, we extended the MgO melt curve measurements to 2 TPa; this is twice the pressure achieved by previous melting experiments on any material. A temperature plateau is observed between 1218 and 1950 GPa in the second-shock states, which is attributed to latent heat of melting. At 1950 GPa, the measured melting temperature is 17 600 K, which is 17% lower than recent theoretical predictions. The melting curve is steeper than that of ${\mathrm{MgSiO}}_{3}$, indicating that MgO is likely solid in the interior of Saturn-sized gas giants and extra-solar super-Earth planets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    1
    Citations
    NaN
    KQI
    []