Effect of temperature and pH on the encapsulation and release of β-carotene from octenylsuccinated oat β-glucan micelles

2020 
Abstract Effect and working mechanism of temperature and pH on encapsulation and release of β-carotene from octenylsuccinated-oat-β-glucan-micelles (OSβG-Ms) were investigated. The stability and solubility of β-carotene, and changes in surface hydrophilicity, core hydrophobicity, and size of β-carotene-loaded-OSβG-Ms were determined. When exposed to temperature (25–45 °C) and pH (4.5–8.5), β-carotene solubilization changed in parabolic manners. Size and absolute zeta-potential of β-carotene-loaded-OSβG-Ms decreased with temperature, while they gave parabolic changing patterns with pH. Those results were ascribed to their hydrophilicity, hydrophobicity, and core/shell compactness via regulating molecule mobility, orientation, and interactions by temperature/pH. The higher temperature concluded with higher β-carotene release, while a U-shaped release profile was observed with pH. Besides its diffusion, erosion-induced shrinking and collapsing of OSβG-Ms favored β-carotene release at pH 1.2–4.5, which was replaced by swelling-induced structural-relaxation at pH 6.8–8.5. The results were favourable in controlling the behavior of β-carotene-loaded-OSβG-Ms by selectively applying environmental parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    3
    Citations
    NaN
    KQI
    []