Crop Establishment Methods and Weed Management Practices Affect Grain Yield and Weed Dynamics in Temperate Rice

2021 
Higher demand and cost of labor and water shortage have forced the farmers to look for an alternate method of cultivation in rice as a substitute to the existing conventional transplanting. Dry direct seeding and water seeding have emerged as better alternatives over transplanting method. These methods not only result in labor saving, but also result in significant water saving in rice. These are important adaptation strategies to the impending climate change. However, the direct seeding method is confronted with severe weed infestation and yield losses if weeds are not managed well. Against this backdrop, a field study was undertaken during kharif seasons of 2019 and 2020 to evaluate the effect of crop establishment methods and weed management practices on rice and its associated weed flora. The results demonstrated that grain yields obtained under water seeding (WS) were statistically at par with transplanting (CT), but significantly superior to dry direct seeding (DDSR). Yield attributes were significantly superior in WS as compared DDSR, but were at par with CT. Weed density followed the order of DDSR > WS > CT. With the advancement in age of the crop, sedges dominated in DDSR, whereas broad-leafweeds (BLW) dominated in WS and CT methods of establishment. All the herbicides reduced the weed density significantly as compared to weedy check. Penoxulam (PE) reduced the weed density and weed dry matter on an average by 91% and 92% at 30 DAS/DAT over weedy check, respectively. PE proved significantly superior in controlling all the sedges and grasses but was less effective against BLW. Maximum reduction in yield due to weeds was observed in weedy check (WC) (58%) and the lowest was observed in PE (3%). Application of PE @ 22.5 g ha−1 under the WS method of crop establishment resulted in highest average weed control efficiency and grain yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []