Image Retrieval Based on Color and Texture Feature Using Artificial Neural Network
2012
Content-based image retrieval CBIR is a technique that helps in searching a user desired information from a huge set of image files and interpret user intentions for the desired information. The retrieval of information is based on features of image like colour, shape, texture, annotation etc. Many of the existing methods focus on the feature extraction and to bridge up the gap between low level features and high level semantics. In this paper we propose a supervised machine learning (SML) using artificial neural network (ANN) and singular value decomposition (SVD) for image retrieval. Specifically we use back propagation algorithm (multilayer perceptron) (MLP) for training and testing our proposed model. Experimental results show that by changing parameters of feature vector back propagation method can have 62% precision instead of 49% as claimed by in Hyoung Ku LEE, Suk In Yoo [1].
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
5
Citations
NaN
KQI