Studies on Chromatographic Fingerprint and Fingerprinting Profile-Efficacy Relationship of Saxifraga stolonifera Meerb.

2015 
This work investigated the spectrum-effect relationships between high performance liquid chromatography (HPLC) fingerprints and the anti-benign prostatic hyperplasia activities of aqueous extracts from Saxifraga stolonifera. The fingerprints of S. stolonifera from various sources were established by HPLC and evaluated by similarity analysis (SA), hierarchical clustering analysis (HCA) and principal component analysis (PCA). Nine samples were obtained from these 24 batches of different origins, according to the results of SA, HCA and the common chromatographic peaks area. A testosterone-induced mouse model of benign prostatic hyperplasia (BPH) was used to establish the anti-benign prostatic hyperplasia activities of these nine S. stolonifera samples. The model was evaluated by analyzing prostatic index (PI), serum acid phosphatase (ACP) activity, concentrations of serum dihydrotestosterone (DHT), prostatic acid phosphatase (PACP) and type II 5α-reductase (SRD5A2). The spectrum-effect relationships between HPLC fingerprints and anti-benign prostatic hyperplasia activities were investigated using Grey Correlation Analysis (GRA) and partial least squares regression (PLSR). The results showed that a close correlation existed between the fingerprints and anti-benign prostatic hyperplasia activities, and peak 14 (chlorogenic acid), peak 17 (quercetin 5-O-β-d-glucopyranoside) and peak 18 (quercetin 3-O-β-l-rhamno-pyranoside) in the HPLC fingerprints might be the main active components against anti-benign prostatic hyperplasia. This work provides a general model for the study of spectrum-effect relationships of S. stolonifera by combing HPLC fingerprints with a testosterone-induced mouse model of BPH, which can be employed to discover the principle components of anti-benign prostatic hyperplasia bioactivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    18
    Citations
    NaN
    KQI
    []