On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation.

2004 
Leukoaminochrome o-semiquinone radical is generated during one-electron reduction of dopamine oxidation product aminochrome when DT-diaphorase is inhibited. Incubation of 100 μM aminochrome with 100 μM dicoumarol, an inhibitor of DT-diaphorase during 2 h, induces 56% cell death (P < 0.001) with concomitant formation of (i) intracellular hydroperoxides (4.2-fold increase compared to control; P < 0.001); (ii) hydroxyl radicals, detected with ESR and spin trapping agents (2.4-fold increase when cells were incubated with aminochrome in the presence of dicoumarol compared to aminochrome alone); (iii) intracellular edema, and cell membrane deterioration determined by transmission electron microscopy; (iv) absence of apoptosis, supported by using anexin-V with flow cytometry; (v) a strong decrease of mitochondrial membrane potential determined by the fluorescent dye 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanineiodide (P < 0.01); (vi) swelling and disruption of outer and inner mitochondrial membranes determined by transmission electron microscopy. These results support the proposed role of leukoaminochrome o-semiquinone radical as neurotoxin in Parkinson's disease neurodegeneration and DT-diaphorase as neuroprotective enzyme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    93
    Citations
    NaN
    KQI
    []