One-step strategic synthesis of x%Ni–AlSBA-15 sorbents and properties of high adsorption desulfurization for model and commercial liquid fuels

2018 
Abstract Hexagonally mesoporous 5–30%Ni-AlSBA-15 (30) sorbents were prepared by one-step strategy synthesis and the adsorptive desulfurization performances were investigated in a fixed bed adsorber via model and commercial liquid fuels at ambient pressure. The highest sulfur capacity (17.46 mg-S/g-sorbent) over 20%Ni-AlSBA-15 (30) correlated closely with high Lewis acid sites and larger S BET of 20%Ni-AlSBA-15 (30). The characterization results of N 2 adsorption, FT-IR, Py-FT-IR, ICP, HRTEM, EDXA, small- and wide-angle XRD revealed that aluminum or nickel atoms could enter effectively the Si-O-Al (or Ni) framework of SBA-15 and were randomly dispersed highly on the hexagonal pore walls of SBA-15. The hexagonal p6mm symmetry mesoporous structure of 20%Ni-AlSBA-15 (30) still remained intact after four successive desulfurization/regeneration cycles, indicating that 20%Ni-AlSBA-15 (30) presents ultrahigh structural stability and regenerable ability. As comparison, SBA-15 and AlSBA-15 (SiO 2 /Al 2 O 3  = ∞, 100, 50, 30, 20, 10) were also prepared and evaluated on physical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    6
    Citations
    NaN
    KQI
    []