Unraveling the spectroscopy of coupled intramolecular tunneling modes: A study of double proton transfer in the formic-acetic acid complex

2011 
The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states. The transitions are fitted to within a few kilohertz of the observed frequencies using a molecule-fixed effective rotational Hamiltonian for the separate A and E vibrational species of the G12 permutation-inversion symmetry group. Interpretation of the motion problem uses an internal-vibration and overall-rotation angular momentum coupling scheme and full sets of rotational and centrifugal distortion constants are determined. The tunneling frequencies of the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    39
    Citations
    NaN
    KQI
    []