Comparison of xylem sap mineral concentrations between kiwifruit shoot types using spittlebugs for non-destructive sampling of sap

2007 
Excreta of the meadow spittlebug [Philaenus spumarius L. (Homoptera: Cercopidae)] feeding on leaves and pedicels of kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson var. deliciosa ‘Hayward’] were collected from insects from two different positions in the vine: from long, non-terminating axillary shoots producing fruit that are high in Ca2+ and low in K+ and from short-terminating axillary shoots producing fruit that are low in Ca2+ and high in K+. The Ca2+, Mg2+, K+ and P concentrations in the excreta were determined, and found to be similar to those in the xylem sap. Daily and seasonal changes in xylem sap composition were compared in excreta collected from the two different shoot types. On average, Ca2+ and Mg2+ concentrations were higher and K+ and P concentrations were lower in xylem sap collected from pedicels on long, non-terminating axillary shoots than in sap collected from pedicels on short-terminating shoots. Differences in the mineral concentration between these two shoot types may therefore be due to differences in the xylem sap mineral concentration reaching the fruit. There was no measurable gradient in xylem sap composition within the parent shoots that could explain the differences between sap composition of the two axillary shoot types. Long, non-terminating shoots had higher leaf area, were more exposed, had higher stomatal conductance and rates of transpiration, and more negative leaf water potentials than short-terminating shoots. The higher xylem sap Ca2+ and Mg2+ concentrations of long shoots were therefore associated with higher rates of water transport to the long shoots. Xylem sap concentration differences between these two shoots types may have been because of differential loading or unloading of minerals between shoot types, associated with differences in transpiration rate or shoot growth rates. The higher transpiration rate of long shoots may cause phloem immobile minerals such as Ca2+ to accumulate to higher levels at cation exchange sites in the shoot apoplast, resulting in increased xylem sap concentrations arriving at the fruit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []