Multiscale spatial density smoothing: an application to large-scale radiological survey and anomaly detection

2017 
ABSTRACTWe consider the problem of estimating a spatially varying density function, motivated by problems that arise in large-scale radiological survey and anomaly detection. In this context, the density functions to be estimated are the background gamma-ray energy spectra at sites spread across a large geographical area, such as nuclear production and waste-storage sites, military bases, medical facilities, university campuses, or the downtown of a city. Several challenges combine to make this a difficult problem. First, the spectral density at any given spatial location may have both smooth and nonsmooth features. Second, the spatial correlation in these density functions is neither stationary nor locally isotropic. Finally, at some spatial locations, there are very little data. We present a method called multiscale spatial density smoothing that successfully addresses these challenges. The method is based on recursive dyadic partition of the sample space, and therefore shares much in common with other ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    18
    Citations
    NaN
    KQI
    []