Spatially-Resolved Spectroscopic Diagnostics of a Miniature RF Atmospheric Pressure Plasma Jet in Argon Open to Ambient Air
2020
The spatially-resolved electron temperature, rotational temperature, and number density of the two metastable Ar 1 s levels were investigated in a miniature RF Ar glow discharge jet at atmospheric pressure. The 1 s level population densities were determined from optical absorption spectroscopy (OAS) measurements assuming a Voigt profile for the plasma emission and a Gaussian profile for the lamp emission. As for the electron temperature, it was deduced from the comparison of the measured Ar 2 p i → 1 s j emission lines with those simulated using a collisional-radiative model. The Ar 1 s level population higher than 10 18 m - 3 and electron temperature around 2.5 eV were obtained close to the nozzle exit. In addition, both values decreased steadily along the discharge axis. Rotational temperatures determined from OH(A) and N 2 (C) optical emission featured a large difference with the gas temperature found from a thermocouple; a feature ascribed to the population of emitting OH and N 2 states by energy transfer reactions involving the Ar 1 s levels.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
4
Citations
NaN
KQI