Weak Shock Propagation with Accretion. III. A Numerical Study On Shock Propagation & Stability

2019 
Core-collapse supernovae span a wide range of energies, from much less than to much greater than the binding energy of the progenitor star. As a result, the shock wave generated from a supernova explosion can have a wide range of Mach numbers. In this paper, we investigate the propagation of shocks with arbitrary initial strengths in polytropic stellar envelopes using a suite of spherically symmetric hydrodynamic simulations. We interpret these results using the three known self-similar solutions for this problem: the Sedov-Taylor blastwave describes an infinitely strong shock and the self-similar solutions from Coughlin et al. (2018b) (Paper I) and Coughlin et al. (2019) (Paper II) describe a weak and infinitely weak shock (the latter being a rarefaction wave). We find that shocks, no matter their initial strengths, evolve toward either the infinitely strong or infinitely weak self-similar solutions at sufficiently late times. For a given density profile, a single function characterizes the long-term evolution of a shock's radius and strength. However, shocks with strengths near the self-similar solution for a weak shock (from Paper I) evolve extremely slowly with time. Therefore, the self-similar solutions for infinitely strong and infinitely weak shocks are not likely to be realized in low-energy stellar explosions, which will instead retain memory of the shock strength initiated in the stellar interior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    6
    Citations
    NaN
    KQI
    []