Green Picosecond Laser Machining of Thermoset and Thermoplastic Carbon Fiber Reinforced Polymers.

2021 
There has been an increase in demand for the development of lightweight and high-strength materials for applications in the transportation industry. Carbon fiber reinforced polymer (CFRP) is known as one of the most promising materials owing to its high strength-to-weight ratio. To apply CFRP in the automotive industry, various machining technologies have been reported because it is difficult to machine. Among these technologies, picosecond laser beam-induced machining has attracted great interest because it provides negligible heat transfer and can avoid tool wear. In this work, we conducted and compared machining of 2.15 mm-thick thermoset and 1.85 mm-thick thermoplastic CFRPs by using a green picosecond laser. The optimized experimental conditions for drilling with a diameter of 7 mm led to a small taper angle (average ~ 3.5°). The tensile strength of the laser-drilled specimens was evaluated, and the average value was 570 MPa. Our study indicates that green picosecond laser processing should be considered as a promising option for the machining of CFRP with a small taper angle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []