Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Anoectochilus roxburghii

2012 
Accurate quantification of transcript profiling with quantitative real time polymerase chain reaction (qRT-PCR) relies on the reliable normalization of an appropriate reference gene. This study reported the identification and validation of nine reference genes, including β-tubulin (β-TUB), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), actin 1/2(ACT-1 and ACT-2), 18S rRNA, and 26S rRNA, from Anoectochilus roxburghii (Wall.) Lindl., a valuable herb remedy widely used for various diseases treatment in traditional Chinese medicine. Transcriptional levels of the candidate reference genes were examined using qRT-PCR analysis and revealed differential expression of the genes in the leaf, stem, root, flower, and peduncle tissues. The relative quantities data were subjected to geNorm software for ranking the expression stability of the reference genes and the results showed that EF-1β and ACT-2 were the two best stable genes whereas GAPDH and 26S rRNA did not favor normalization of qRT-PCR in these tissues. The expression pattern of a squalene synthase encoding gene (SS) was also determined in parallel. The analyses were in great consistency when the qRT-PCR data was normalized to the expression of each or both of EF-1β and ACT-2 as the internal control, further confirming the reliability of EF-1β and ACT-2 as the best internal control. The present study provided the first important clues for accurate data normalization in transcript profiling in A. roxburghii, which will be essential to further functional genomics study in the valuable medicinal plant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    16
    Citations
    NaN
    KQI
    []