Brake Data-Based Location Tracking in Usage-Based Automotive Insurance Programs
2020
Many usage-based automotive insurance programs do not directly use any GPS-based location tracking devices. Instead, CAN-bus data, such as brake signal data, can be collected by these programs to evaluate drivers’ driving habits and vehicle usage policies. In this paper, we demonstrate that by using a temporal sequence of applied brake signals collected from a vehicle, attackers can still possibly infer the vehicle’s route over the period, even though brake signal data does not reveal any specific location information. Our route inference is basically composed of three steps: At first, we categorize brake signal subsequences into four different driving maneuvers (i.e., stopping from a certain speed, reducing speed to adjust with the traffic flow, and taking left and right turns). Second, we estimate the number of intersections traversed by the vehicle using the applied brake signals and their corresponding maneuvers. Particularly, we also estimate the overall speed profile based on the magnitude and interval of different brake signals. From the estimated speed profile, we infer the distances, traveling time, and traffic signs corresponding to the candidate edges. Finally, we design a graph-based route-selection algorithm to find a list of (paths) routes from the regional map using the predicted driving maneuvers and the speed profile. We use a score function based on three factors (i.e., distance, traveling time, and traffic signs) to identify a candidate edge. We evaluate our approach using over 450km of transportation data, which has been collected from 24 individuals. The experimental results demonstrate that, by resorting to our solution, 89% of the original drivers’ trajectory can be successfully recovered from their brake data regardless of driver and vehicle models.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
2
Citations
NaN
KQI