Hyperelastic Phase-Field Fracture Mechanics Modeling of the Toughening Induced by Bouligand Structures in Natural Materials

2019 
Abstract Bouligand structures are widely observed in natural materials; elasmoid fish scales and the exoskeleton of arthropods, such as lobsters, crabs, mantis shrimp and insects, are prime examples. In fish scales, such as those of the Arapaima gigas , the tough inner core beneath the harder surface of the scale displays a Bouligand structure comprising a layered arrangement of collagen fibrils with an orthogonal or twisted staircase (or plywood) architecture. A much rarer variation of this structure, the double-twisted Bouligand structure, has been discovered in the primitive elasmoid scales of the coelacanth fish; this architecture is quite distinct from “modern” elasmoid fish scales yet provides extraordinary resistance to deformation and fracture. Here we examine the toughening mechanisms created by the double-twisted Bouligand structure in comparison to those generated by the more common single Bouligand structures. Specifically, we have developed an orientation-dependent, hyperelastic, phase-field fracture mechanics method to computationally examine the relative fracture toughness of elasmoid fish scales comprising single vs. double-twisted Bouligand structures of fibrils. The model demonstrates the critical role played by the extra inter-bundle fibrils found in coelacanth fish scales in enhancing the toughness of Bouligand-type structures. Synthesis and fracture tests of 3-D printed Bouligand-type materials are presented to support the modeling and complement our understanding of the fracture mechanisms in Bouligand-type structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    20
    Citations
    NaN
    KQI
    []