Construction of polluted aerosol in accumulation that affects the incidence of lung cancer

2020 
Abstract Background This model demonstrated the correlation between lung cancer incidences and the parts of ambient air pollution according to the National Aeronautics and Space Administration (NASA)'s high resolution technology satellites. Methods Chemical type of aerosols was investigated by the Aerosol Diagnostics Model such as black carbon, mineral dust, organic carbon, sea-salt and SO4. The model investigated associations between the six year accumulation of each aerosol and lung cancer incidence by Bayesian hierarchical spatio-temporal model. Which also represented integrated geophysical parameters. Results In analyses of accumulated chemical aerosol component from 2010 – 2016, the incidence rate ratio (IRR) of patients in 2017 were estimated. We observed a significant increasing risk for organic carbon exposure (IRR 1.021, 95%CI 1.020–1.022), SO4, (IRR 1.026, 95% CI 1.025–1.028) and dust, (IRR 1.061, 95% CI 1.058–1.064). There was also suggestion of an increased risk with, every 1 ug/m3 increase in organic carbon compound is associated with 21% increased risk of lung cancer, whereas a 26% excess risk of cancer per 1 ug/m3 increase in mean SO4 and 61% increased risk of lung cancer for dust levels. The other variables were the negative IRR which did not increase the risk of the exposed group. Conclusion With our results, this process can determine that organic carbon, SO4 and dust was significantly associated with the elevated risk of lung cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    3
    Citations
    NaN
    KQI
    []