Study of geometric functionals depending on curvature by shape optimization methods. Applications to the functionals of Willmore and Canham-Helfrich.

2014 
In biology, when a large amount of phospholipids is inserted in aqueous media, they immediatly gather in pairs to form bilayers also called vesicles. In 1973, Helfrich suggested a simple model to characterize the shapes of vesicles. Imposing the area of the bilayer and the volume of fluid it contains, their shape is minimizing a free-bending energy involving geometric quantities like curvature, and also a spontanuous curvature measuring the asymmetry between the two layers. Red blood cells are typical examples of vesicles on which is fixed a network of proteins playing the role of a skeleton inside the membrane. One of the main work of this thesis is to introduce and study a uniform ball condition, in particular to model the effects of the skeleton. First, we minimize the Helfrich energy without constraint then with an area constraint. The case of zero spontaneous curvature is known as the Willmore energy. Since the sphere is the global minimizer of the Willmore energy, it is a good candidate to be a minimizer of the Helfrich energy among surfaces of prescribed area. Our first main contribution in this thesis was to study its optimality. We show that apart from a specific interval of parameters, the sphere is no more a global minimizer, neither a local minimizer. However, it is always a critical point. Then, in the specific case of membranes with negative spontaneous curvature, one can wonder whether the minimization of the Helfrich energy with an area constraint can be done by minimizing individually each term. This leads us to minimize total mean curvature with prescribed area and to determine if the sphere is a solution to this problem. We show that it is the case in the class of axisymmetric axiconvex surfaces but that it does not hold true in the general case. Finally, considering both area and volume constraints, the minimizer cannot be the sphere, which is no more admissible. Using the shape optimization point of view, the third main and most important contribution of this thesis is to introduce a more reasonable class of surfaces, in which the existence of an enough regular minimizer is ensured for general functionals and constraints involving the first- and second-order geometric properties of surfaces. Inspired by what Chenais did in 1975 when she considered the uniform cone property, we consider surfaces satisfying a uniform ball condition. We first study purely geometric functionals then we allow a dependence through the solution of some second-order elliptic boundary value problems posed on the inner domain enclosed by the shape.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []