Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition

2018 
Abstract The recent discovery of comammox Nitrospira capable of converting ammonia to nitrate in a single organism radically challenged our century-long perception of the classic two-step nitrification performed by ammonia oxidizers and nitrite oxidizers. However, our understanding of the niche separation of comammox Nitrospira and canonical nitrifiers in forest ecosystems remains limited, especially under a global scenario of elevated nitrogen (N) deposition. Here we evaluated the impacts of six-year N deposition on the dynamics of comammox Nitrospira , ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a subtropical forest soil. Soil inorganic N concentrations significantly increased under the six-year simulation of N deposition, while soil pH, available phosphorus, total carbon (C), C/N ratio and microbial biomass significantly decreased. Quantitative PCR showed that the amoA gene abundances of comammox Nitrospira clade B and AOA substantially increased under the increasing rates of N deposition. By contrast, the AOB amoA gene abundance significantly decreased with the higher levels of N deposition (100 and 150 kg N ha −1 yr −1 ). Increased 13 CO 2 incorporation into the AOA communities, rather than comammox Nitrospira or AOB, was demonstrated in a DNA-stable isotope probing microcosm, indicative of the capacity of AOA to assimilate 13 CO 2 through autotrophic nitrification in the investigated subtropical forest soil under long-term N deposition. Phylogenetic analysis revealed that the autotrophic AOA assemblages belonged to the Nitrosotalea cluster, and their capacity for assimilating CO 2 through autotrophic nitrification was not affected by the long-term N deposition. Taken together, we provided new evidence for the niche separation of comammox Nitrospira and canonical ammonia oxidizers in soil nitrification under the long-term N deposition in the acidic subtropical forest soil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    58
    Citations
    NaN
    KQI
    []