Effects of Moisture Content on the Minimum Explosible Concentration of Aluminum Powder and the Related Mechanism

2020 
Aluminum powder has been widely applied to various industries. However, its high activity and high burn rate can cause serious explosion risks. Many factors affecting the explosion of aluminum powder have been determined, yet moisture content has not been included. In the present work, the minimum explosible concentrations of aluminum powders with different moisture contents were measured with a 20-liter explosion test apparatus using the explosion accident in Kunshan, China, as a study case. The experimental results suggest that the minimum explosible concentration of aluminum powder dramatically increases with the increase of its moisture content first and the increasing trend becomes slower as the moisture content further increased. The oxidation time has no significant effects on the minimum explosible concentration of aluminum power in 8 hours at room temperature. Further investigation suggests that the moisture lowers the explosion risk of aluminum powder by altering its surface oxide film, ignition, and combustion process. The low contents of moisture in the range of 0%-8% increase the minimum explosible concentration of aluminum powder by inhibiting the reaction kinetics and particle agglomeration, while high contents of moistures in the range of 8%-20% affect the minimum explosible concentration by the endothermic effect and oxygen dilution effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []