Prediction of hydro-acoustic resonances in hydropower plants by a new approach based on the concept of swirl number

2019 
ABSTRACTHydropower plant units operating in off-design conditions are subject to cavitation flow instabilities, potentially inducing hydro-acoustic resonances under certain conditions. They can be predicted by using one-dimensional numerical models of hydropower plants that rely on a proper modelling of the draft tube cavitation flow in off-design conditions. The latter is based on hydro-acoustic parameters that can be identified experimentally on the reduced scale physical model of the prototype on its complete operating range, which however requires an important number of measurements during model testing to consider the influence of both the head and the discharge. This article proposes a new methodology enabling the prediction of resonance conditions excited by a draft tube cavitation vortex on the complete head range of a hydropower plant unit. The methodology relies on the experimental identification at the model scale of the hydro-acoustic parameters and their transposition from the model to the pr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    13
    Citations
    NaN
    KQI
    []