Laser-generated focused ultrasound transmitters with frequency-tuned outputs over sub-10-MHz range

2019 
Previous laser-generated focused ultrasound (LGFU) systems have been operated with >15 MHz frequency, allowing for high spatial precision ( 15 MHz frequency, allowing for high spatial precision (<100 μm). However, they have been limited only to proximal biomedical applications ex vivo with treatment depths smaller than 10 mm from the lens surface. Although the low-megahertz frequency operation has the advantage of a longer range of therapy, this requires a proper photoacoustic lens made of a nanocomposite coating over a spherically curved substrate whose transmission layer is physically designed for frequency-tuned outputs. This demands a fabrication method that can provide such a nanocomposite structure. We demonstrate photoacoustic lenses operated in an unexplored frequency range of 1–10 MHz, which can simultaneously produce high-amplitude pressure outputs sufficient for pulsed acoustic cavitation. We physically design a spatially elongated photoacoustic output and then fabricate a transmitter by controlling the density of light-absorbing nanoscale elements ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    6
    Citations
    NaN
    KQI
    []