Functional characterization of the type I toxin Lpt from Lactobacillus rhamnosus by fluorescence and atomic force microscopy

2019 
Lpt is a 29 amino acid long type I toxin identified in the plasmid DNA of wild Lactobacillus rhamnosus strains isolated from food. We previously reported that transcription of the encoding gene was upregulated under nutritional starvation conditions mimicking cheese ripening environment. The heterologous expression of the Lpt peptide in E. coli resulted in cell growth inhibition, nucleoid condensation and compromised integrity of the cell membrane. Fusion of the Lpt peptide with the fluorescent protein mCherry allowed to visualize the accumulation of the peptide into the membrane, while mutagenesis experiments showed that either the insertion of a negatively charged amino acid into the hydrophobic α-helix or deletion of the hydrophilic C-terminal region, leads to a non-toxic peptide. AFM imaging of Lpt expressing E. coli cells has revealed the presence of surface defects that are compatible with the loss of portions of the outer membrane bilayer. This observation provides support for the so-called “carpet” model, by which the Lpt peptide is supposed to destabilize the phospholipid packing through a detergent-like mechanism leading to the removal of small patches of bilayer through micellization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    10
    Citations
    NaN
    KQI
    []