Insulin-like growth factor-1 receptor and its ligand regulate the reentry of adult ventricular myocytes into the cell cycle.

1997 
Abstract To determine whether insulin-like growth factor-1 (IGF-1) stimulation in vitro of ventricular myocytes isolated from infarcted hearts is characterized by the reentry of cells into the cell cycle, the expression and kinase activity of cyclins E, A, and B and DNA synthesis were evaluated 5 days after coronary artery occlusion and 24 and 48 h following the addition of IGF-1. Myocytes surviving an acute myocardial infarction were employed because of their increase in surface insulin-like growth factor-1 receptors (IGF-1R). Western blot analysis documented that IGF-1 resulted in an upregulation of cyclins D 1 , E, A, and B in viable postinfarcted myocytes. Cyclin E- and A-associated histone H 1 kinase activity and cyclin D 1 -associated retinoblastoma protein-associated kinase activity also increased, but cyclin B kinase activity was not enhanced by IGF-1. These changes in cyclins and kinase activities were characterized by a significant increase in the number of cells labeled by bromodeoxyuridine, from approximately 630/10 6 to nearly 9,000/10 6 myocytes. This latter value was reduced by more than 50% by antisense oligodeoxynucleotide to IGF-1R mRNA. However, IGF-1 stimulation did not induce nuclear mitotic division and cytokinesis. In conclusion, the growth-promoting effect of IGF-1 on adult myocytes is regulated by the density of IGF-1R, which conditions the activation of the replicatory machinery of the cells. The failure of IGF-1 to enhance cyclin B kinase activity may be responsible for a block in the cell cycle and the inability of myocytes to progress through the M phase and subsequently divide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    54
    Citations
    NaN
    KQI
    []