Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys

2021 
Spintronics is the fast growing field that will play a key role in optimizing power consumption, memory, and processing capabilities of nanoelectronic devices. Heusler alloys are potential candidates for application in spintronics due to their room temperature (RT) half-metallicity, high Curie temperature, low lattice mismatch with most substrates, and strong control on electronic density of states at Fermi level. In this work, we investigate the effect of {substitutional doping and disorder} on the half-metallicity, phase stability, and magnetism of Heusler alloys using density functional theory methods. Our study shows that electronic and magnetic properties of half/full-Heusler alloys can be tuned by changing electron-count through controlled variation of chemical compositions of alloying elements. We provide a detailed discussion on the effect of substitutional doping and disorder on the tunability of half-metallic nature of Co$_{2}$MnX and NiMnX based Heusler alloys, where X represents group 13\textendash 16 and period 3\textendash 6 elements of the periodic table. {Based on the idea of electron count and disorder, we predicted a possible existence of thermodynamically stable half-metallic multicomponent bismuthides, for example, (CuNi$_{3}$)Mn$_{4}$Bi$_{4}$ and (ZnNi$_{7}$)Mn$_{8}$Bi$_{8}$, through substitution doping at Ni site by specific Cu and Zn composition in half-Heusler NiMnBi.} We believe that the design guide {based on electron-counts} presented for half-metals will play a key role in electronic-structure engineering of novel Heusler alloys for spintronic application, which will accelerate the development and synthesis of novel materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []