[Menkes' disease: heterozygosity testing by quantitative real-time PCR and the dilemma of therapeutic support].

2005 
: Menkes' disease is a rare X-linked multisystemic lethal disorder of copper transport metabolism. Failure of synthesis of several copper enzymes explains most of the clinical features, which were characterised by neurodegenerative symptoms and connective tissue manifestations. Most cases are still prone to rapidly progressive cerebral degeneration and early death in the first few years. Since CNS-dysfunction usually preceeds development of the pathognomonic "steely" hair, delay of clinical diagnosis and onset of therapeutic intervention precludes longlasting neurological benefit. This is particularly true for patients with large deletions or severe truncations of the responsible ATP7A gene. We report on our own experience with a patient, who was diagnosed to be affected by Menkes' syndrome at the age of one year, due to the specific hair texture and biochemical abnormalities. Molecular investigation revealed a total deletion of exon 15 of the ATP7A gene. Heterozygosity was confirmed by means of real-time PCR in the child's mother, but could be excluded in the grandmother and other female relatives at risk. Therapeutic support with subcutaneous injection of copper-histidinate normalised diminished copper and coeruloplasmin serum levels, but was unable to influence the clinical course and to prevent the fatal outcome at the age of two years. This observation is in line with the experience of the literature claiming that currently available medication will hardly be able to normalise brain copper levels. However, observations of clinical variants of Menkes' disease with quite a different outcome and, more importantly, emerging of alternative copper transport pathways might still justify this time-limited therapeutic intervention.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []