Complete Chloroplast Genome Sequencing and Genetic Relationship Analysis of Capsicum chinense Jacq

2017 
Capsicum chinense is one of the five domesticated pepper species belonging to the Solanaceae family. Capsicum sp. have been used as model systems in comparative and evolutionary genomics because their superior availability of chloroplast genome in the solanaceae family. Similarly, molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. So far however, only partial taxonomic and phylogenetic analyses have been carried out for the genus. Thus, the complete chloroplast genome sequence of a cultivated pepper (C. chinense) has been reported here. The total length of the chloroplast genome is 156,936 bp, with 37.7% overall GC content. A pair of inverted repeats (IRs) of 25,847 bp was separated by a small single copy (SSC) region of 17,912 bp and a large single copy (LSC) region of 87,330 bp. The chloroplast genome harbors 113 known genes, including 79 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA (tRNA) genes. In all, 21 of these genes are duplicated in the inverted repeat regions, 15 genes and six tRNA genes contain a single intron, while two genes have two introns. Analysis revealed 117 simple sequence repeat (SSR) loci, which are mostly located in the intergenic regions. The complete chloroplast genome reported here enriches our knowledge of the genetic complement of C. chinense, and contributes to our understanding of the genetic relationships within the genus Capsicum.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []