Highly efficient capacitive deionization of brackish water with manganese vanadate nanorod decorated reduced graphene oxide electrode

2021 
Capacitive deionization (CDI) utilizing metal oxide-decorated carbon-based materials has emerged as a promising process to convert saline water into freshwater due to its lower energy demand and robustness. In this study, manganese vanadate (MnV2O6) combined with 2-dimensional reduced graphene oxide (MVO@rGO) was synthesized via a hydrothermal method. Results show that the small-sized nanorods of MVO with the aspect ratio of 4–6 can be embedded onto the rGO surface at a hydrothermal temperature of 180 °C for 18 h in the presence of sodium dodecyl sulfate as the stabilizing agent. The as-synthesized MVO@rGO provides excellent electrochemical performance with specific capacitances of 208 and 201 F g−1 at 5 mV s−1 and 2 A g−1, respectively. The MVO@rGO exhibits a high specific surface area of 374 m2 g−1 with a continuous pore size distribution ranging from 2 to 10 nm, which can provide sufficient active sites and channels for ion transport. The low impedance of MVO@rGO also accelerates the ion and electron transport inside the porous structure. Moreover, both electric double layer and faradaic capacitance contribute to the electrochemical performance of MVO@rGO, resulting in superior CDI performance. The symmetric MVO@rGO electrodes show an enhanced salt electrosorption capacity (SEC) of 49.3 mg g−1 at 1.4 V in the 1000 mg L−1 NaCl solution and excellent long-term stability toward salt removal for 50 cycles. The CDI Ragone plot also shows that the SEC is a function of initial NaCl concentration (100–1000 mg L−1) and applied voltage (0.8–1.4 V). The superior electrochemical and CDI performance makes the MVO@rGO a promising electrode material for brackish water desalination and other electrochemical energy storage applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []