Identifying the Structural Requirements for Chromosomal Aberration by Incorporating Molecular Flexibility and Metabolic Activation of Chemicals

2007 
Modeling the potential of chemicals to induce chromosomal damage has been hampered by the diversity of mechanisms which condition this biological effect. The direct binding of a chemical to DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity. Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with nuclear proteins associated with DNA (e.g., histone proteins) were identified as additional mechanisms leading to chromosomal aberrations (CA). A comparative analysis of in vitro genotoxic data for a large number of chemicals revealed that more than 80% of chemicals that elicit bacterial mutagenicity (as indicated by the Ames test) also induce CA; alternatively, only 60% of chemicals that induce CA have been found to be active in the Ames test. In agreement with this relationship, a battery of models is developed for modeling CA. It combines the Ames model for bacterial mutagenicity, which has already been derived and integrated i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    29
    Citations
    NaN
    KQI
    []