A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control

2020 
The link between gene regulation and morphogenesis of multicellular organisms is a fundamental problem in biology. We address this question in the floral meristem of Arabidopsis, which generates new tissues and organs through complex changes in growth patterns. Starting from high-resolution time-lapse images, we generated a comprehensive 4-D atlas of early flower development including cell lineage, cellular growth rates and the expression patterns of 28 regulatory genes. This information was introduced in MorphoNet, a web-based open-access platform. The application of mechanistic computational models indicated that the molecular network based on the literature only explained a minority of the expression patterns. This was substantially improved by adding single regulatory hypotheses for individual genes. We next used the integrated information to correlate growth with the combinatorial expression of multiple genes. This led us to propose a set of hypotheses for the action of individual genes in morphogenesis, not visible by simply correlating gene expression and growth. This identified the central transcription factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated, multiscale view of flower development, this atlas should represent a fundamental step towards mechanistic multiscale-scale models of flower development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    1
    Citations
    NaN
    KQI
    []