Comparison of Two Methods to Assess Ocean Tide Models

2012 
Two methods to assess ocean tide models, the current method and the total discrepancy method, are compared from the perspective of their relationship to the root-mean-square difference of tidal sea surface height (totaldiscrepancy).Thesetwomethodsareidenticallythesamewhenthereisonlyonespatiallocationinvolved. When there is more than one spatial location involved, the current method is the root-mean-square difference of total discrepancy at each location, and the total discrepancy method is the averaged total discrepancy. The result from the current method is always larger than or equal to that from the total discrepancy method. Monte Carlo simulation indicates that the difference between their results increases with increasing spatial variability of total discrepancy. Both of these two methods are then used to compare the two tide models of the Ocean Surface Topography Mission (OSTM)/Jason-2. The discrepancy of these two models as measured by the total discrepancy method decreases monotonically from around 11.4 to 2.2 cm with depth increasing from 50 to 1000 m. In contrast, the discrepancy measured by the current method varies from 21.6 to 2.9 cm. Though the discrepancy measured by the current method decreases with increasing depth in general, there are abrupt increases at several depth ranges. These increases are associated with large spatial variability of total discrepancy and their physical explanation is elusive. Because the total discrepancy method is consistent with the rootmean-squaredifferenceoftidalseasurfaceheightanditsinterpretationisstraightforward,itsusageissuggested.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    6
    Citations
    NaN
    KQI
    []