Short chain fatty acid butyrate promotes virus infection by repressing interferon stimulated genes

2020 
Butyrate is an abundant metabolite produced by the gut microbiota and is known to modulate multiple immune system pathways and inflammatory diseases. However, studies of its effects on virus infection of cells are limited and enigmatic. We found that butyrate increases cellular infection and virus replication in influenza virus, reovirus, and human immunodeficiency virus infections. Further exploring this phenomenon, we found that addition of butyrate to cells deficient in type I interferon (IFN) signaling did not increase susceptibility to virus infection. Accordingly, we discovered that butyrate suppressed levels of specific IFN stimulated gene (ISG) products in human and mouse cells. Butyrate did not inhibit IFN-induced phosphorylation of transcription factors STAT1 and STAT2 or their translocation to the nucleus, indicating that IFN signaling was not disrupted. Rather, our data are suggestive of a role for inhibition of histone deacetylase activity by butyrate in limiting ISG induction. Global transcript analysis revealed that butyrate increases expression of more than 800 cellular genes, but represses IFN-induced expression of 60% of ISGs. Overall, we identify a new mechanism by which butyrate promotes virus infection via repression of ISGs. Our findings also add to the growing body of evidence showing that individual ISGs respond differently to type I IFN induction depending on the cellular environment, including the presence of butyrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    1
    Citations
    NaN
    KQI
    []