Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods

2017 
Computational electronic structure calculations are routinely undertaken to predict thermodynamic properties of various species. However, the application of highly accurate wave function theory methods, such as the “gold standard” coupled cluster approach including single, double, and partly triple excitations in perturbative fashion, CCSD(T), to large molecules is limited due to high computational cost. In this work, the promising domain based local pair natural orbital coupled cluster approach, DLPNO–CCSD(T), has been tested to reproduce 113 accurate formation enthalpies of medium-sized molecules (few dozens heavy atoms) important for bio- and combustion chemistry via the reaction based Feller–Peterson–Dixon approach. For comparison, eight density functional theory (B3LYP, B3LYP-D3, PBE0, PBE0-D3, M06, M06-2X, ωB97X-D3, and ωB97M-V) and MP2-based (B2PLYP-D3, PWPB95-D3, B2T-PLYP, B2T-PLYP-D, B2GP-PLYP, DSD-PBEP86-D3, SCS-MP2, and OO-SCS-MP2) methods have been tested. The worst performance has been obtain...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    276
    References
    27
    Citations
    NaN
    KQI
    []