Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system

2018 
Abstract Growth of heterotrophic bacterium Bacillus subtilis was metabolically coupled with the photosynthetic activity of an astaxanthin-producing alga Haematococcus pluvialis for conversion of starch-containing waste stream into carotenoid-enriched biomass. The H. pluvialis accounted for 63% of the produced co-culture biomass of 2.2 g/L. Importantly, the binary system requires neither exogenous supply of gaseous substrates nor application of energy-intensive mass transfer technologies due to in-situ exchange in CO 2 and O 2 . The maximum reduction in COD, total nitrogen and phosphorus reached 65%, 55% and 30%, respectively. Conducted techno-economic assessment suggested that the astaxanthin-rich biomass may potentially offset the costs of waste treatment, and, with specific productivity enhancements (induction of astaxanthin to 2% and increase H. pluvialis fraction to 80%), provide and additional revenue stream. The outcome of this study demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into value-added products through metabolic coupling of heterotrophic and phototrophic metabolisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    10
    Citations
    NaN
    KQI
    []