Atrazine Bioremediation and Its Influence on Soil Microbial Diversity by Metagenomics Analysis

2020 
Pesticide accumulation in agricultural soils is an environmental concern, often addressed through distinct bioremediation strategies. This study has tried to analyze various soil bioremediation options viz., biostimulation, bioaugmentation, and natural attenuation in terms of efficiency and the response of autochthonous microbial flora by using atrazine as a model contaminant. Soil mesocosms were established with 100 kg of soil simulating the field conditions. The soil previously exposed to the herbicide was used for the bioaugmentation strategy undertaken in this study. We have tried to analyze how the microbial community responds to a foreign compound, both in terms of taxonomic and functional capacities? To answer this, we have analyzed metagenome of the mesocosms at a time point when 90% atrazine was degraded. Bioaugmentation for bioremediation proved to be efficient with a DT90 value of 15.48 ± 0.79 days, in comparison to the natural attenuation where the DT90 value was observed to be 41.20 ± 1.95 days. Metagenomic analysis revealed the abundance of orders Erysipelotrichales, Selemonadales, Clostridiales, and Thermoanaerobacterales exclusively in SBS mesocosm. Besides Pseudomonas, bacterial genera such as Achromobacter, Xanthomonas, Stenotrophomonas, and Cupriavidus have emerged as the dominant members in various bioremediation strategies tested in this study. Inclusive results suggest that inherent microbial flora adjust their community and metabolic machinery upon exposure to the pollutant. The site under pollutant stress showed efficient microbial communities to bio-remediate the newly polluted terrestrial ecologies in relatively less time and by economic means.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []