Non-linear bandgap strain dependence in highly strained germanium using strain redistribution in 200 mm GeOI wafers for laser applications

2016 
Applying a large tensile strain of several percent in a Ge layer is promising in order to improve its optical properties and possibly turn germanium into an efficient CMOS compatible light emitter. Several approaches are currently being explored for high strain induction into Ge [1-4]. Since biaxial or uniaxial stress inductions are interesting, we have studied both approachs using tensile strain redistribution in 200 mm GeOI wafers. In this work, we compare simulations with experimental results in order to accurately investigate the bandgap-strain dependence in highly strained Ge devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []