Design and Analysis of Battery-Integrated Modular Multilevel Converters for Automotive Powertrain Applications

2021 
The automotive industry has grown considerably over the last century consequently increasing green-house gas emissions and thus contributing towards increase in the average global temperature. It is thus of paramount importance to increase the use of alternative energy sources. Electric vehicles have gained popularity over the last decade. However, a major concern with electric vehicles is their range. The range of an electric vehicle is limited by the battery pack, in particular, the weakest cell of the pack. One method of increasing the available energy from the battery pack is by introducing more electronics. Modular multilevel converters, with their modular concept, could be a viable solution. The concept of battery-integrated modular multilevel converters (BI-MMC) for automotive applications is explored. In particular, the impact of the number of cascaded cells per submodule is investigated, considering battery losses, DC-link capacitor losses, and the converter losses. Furthermore, an optimization of the DC-link capacitors and the selection of MOSFET switching frequency is presented in order to minimize the total losses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []