Common and distinct roles of frontal midline theta and occipital alpha oscillations in coding temporal intervals and spatial distances

2020 
Judging how far something is and how long it takes to get there are critical to memory and navigation. Yet, the neural codes for spatial and temporal information remain unclear, particularly how and whether neural oscillations might be important for such codes. To address these issues, participants traveled through teleporters in a virtual town while we simultaneously recorded scalp EEG. Participants judged the distance and time spent inside the teleporter. Our findings suggest that alpha power relates to distance judgments while frontal theta power relates to temporal judgments. In contrast, changes in alpha frequency and beta power indexed both spatial and temporal judgments. We also found evidence for fine-grained temporal coding and an effect of past trials on temporal but not spatial judgments. Together, these findings support partially independent coding schemes for spatial and temporal information, and suggest that low-frequency oscillations play important roles in coding both space and time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    0
    Citations
    NaN
    KQI
    []