Degradation of cyclic diguanosine monophosphate by a hybrid two-component protein protects Azoarcus sp. strain CIB from toluene toxicity

2016 
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls diverse functions in bacteria, including transitions from planktonic to biofilm lifestyles, virulence, motility, and cell cycle. Here we describe TolR, a hybrid two-component system (HTCS), from the β-proteobacterium Azoarcus sp. strain CIB that degrades c-di-GMP in response to aromatic hydrocarbons, including toluene. This response protects cells from toluene toxicity during anaerobic growth. Whereas wild-type cells tolerated a sudden exposure to a toxic concentration of toluene, a tolR mutant strain or a strain overexpressing a diguanylate cyclase gene lost viability upon toluene shock. TolR comprises an N-terminal aromatic hydrocarbon-sensing Per–Arnt–Sim (PAS) domain, followed by an autokinase domain, a response regulator domain, and a C-terminal c-di-GMP phosphodiesterase (PDE) domain. Autophosphorylation of TolR in response to toluene exposure initiated an intramolecular phosphotransfer to the response regulator domain that resulted in c-di-GMP degradation. The TolR protein was engineered as a functional sensor histidine kinase (TolR SK ) and an independent response regulator (TolR RR ). This classic two-component system (CTCS) operated less efficiently than TolR, suggesting that TolR was evolved as a HTCS to optimize signal transduction. Our results suggest that TolR enables Azoarcus sp. CIB to adapt to toxic aromatic hydrocarbons under anaerobic conditions by modulating cellular levels of c-di-GMP. This is an additional role for c-di-GMP in bacterial physiology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    7
    Citations
    NaN
    KQI
    []