Mechanical and Magnetic Properties of Novel Yttria‐Stabilized Tetragonal Zirconia/Ni Nanocomposite Prepared by the Modified Internal Reduction Method

2005 
Dense ceramic/metal nanocomposite has been fabricated by internal reduction method, which includes a two-step process: sintering of ceramic–metal oxide solid solution and subsequent heat treatment in a reducing atmosphere to precipitate metal nanoparticles. This novel technique has been applied to yttria-stabilized tetragonal zirconia (Y-TZP) and nickel oxide (NiO) system to fabricate Y-TZP/Ni nanocomposite. Dense Y-TZP and 0.3 mol% NiO solid solution ceramic was successively prepared by the pressureless sintering, and Y-TZP/Ni was fabricated by the internal reduction treatment. The obtained Y-TZP/Ni nanocomposite possessed characteristic intragranular nanostructure with nano-sized metallic Ni particles of around 20 nm. Fracture toughness of both the solid solution and nanocomposite was remarkably improved because of the solid solution of NiO into Y-TZP and resultant destabilization of the tetragonal phase, and the Y-TZP/Ni nanocomposite was still destabilized by the remaining nickel solution after the reduction. The nanocomposite exhibited ferromagnetism, while the Y-TZP–NiO solid solution had diamagnetic nature. Comparison of saturation magnetization values revealed that 39.5 at.% of introduced nickel was reduced to metallic nanoparticle, proving the existence of residual NiO solute in zirconia that contributed to higher toughness value than the monolithic Y-TZP. It is concluded that the introduced internal reduction method is a suitable process to achieve multifunctional ZrO2/Ni nanocomposite with high toughness and coexistent magnetic characteristic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    29
    Citations
    NaN
    KQI
    []