Nondestructive Three-Dimensional Observation of the Influence of Zirconium Inclusions in Laser-Irradiated Fusion-Spliced Optical Fiber on Core Structure Changes Using Synchrotron Radiation X-ray Micro-Computed Tomography

2013 
In this paper, we describe a nondestructive method of observing changes in the microstructure of optical fibers subjected to CO2 laser irradiation for optical fiber splicing using synchrotron radiation micro-computed tomography (CT). In particular, we evaluated a method of enhancing the contrast between a GeO2-doped optical fiber core and a silica cladding by performing CT observations of the X-ray energy around the Ge-K absorption edge. Specifically, procedures for extracting a GeO2-doped core from a three-dimensional image of optical fibers by the cluster labeling method are proposed and evaluated. The approach enabled us to observe how inclusions at the optical fiber splicing interface influence the optical fiber core structure. We also expect this observation method to be used for improving such aspects of laser processing performance as insertion loss and mechanical strength for recently developed optical fibers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []