Agro-ecosystem modeling can aid in the optimization of biomass feedstock supply

2016 
Recent European Directives promoted the development of biofuels, requesting mandatory limits to their emissions ot greenhouse gases (GHG). Second-generation biofuels based on lignocellulosic biomass are prime candidates but their GHG emissions are variable and uncertain. Agro-ecosystem modeling can capture them and the performance of biofuel feedstocks.This study aimed at optimizing feedstock supply for a bioethanol unit in France, from agricultural residues, annual and perennial crops. Their productivity and environmental impacts were modelled on a regional scale using geo-referenced data on soil properties, crop management, land-use and future weather data. Several supply scenarios were tested. Cereal straw was the most efficient feedstock but had a low availability, and only miscanthus could meet the bioethanol plant's demand. Sorghum combined poor yields and high GHG emissions compared by miscanthus and triticale. A mix of three biomass sources used less than 3% of the regional agricultural land while abating GHG emissions by 60%. The production of biomass and its environmental impacts can be mapped with agro-ecosystem models.Variability in soil and climate conditions can be used to optimize biomass supply mixes.Appropriate selection of feedstocks mitigates the carbon-intensity of biofuels.Perennial crops and agricultural residues out-perform annual crops, but their availability is limited.Relying on multiple biomass feedstock sources is recommended.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    3
    Citations
    NaN
    KQI
    []