Influence of Ordered Morphology on the Anisotropic Actuation in Uniaxially Oriented Electroactive Polymer Systems

2009 
Ionic polymer−metal composites (IPMCs) are electroactive materials that undergo bending motions with the stimulus of a relatively weak electric field. To understand the fundamental role of the nanoscale morphology of the ionomer membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated the actuation performance of IPMC materials subjected to uniaxial orientation. The perfluorinated ionomer nanostructure altered by uniaxial orientation mimicks the fibrillar structure of biological muscle tissue and yields a new anisotropic actuation response. It is evident that IPMCs cut from films oriented perpendicular to the draw direction yield tip-displacement values that are significantly greater than those of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appear to resist bending and yield tip-displacement values that are much less than those of unoriented IPMCs. This anisotropic actuation behavior is attributed, in part, to the contribution of the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    18
    Citations
    NaN
    KQI
    []