AstroSat/LAXPC reveals the high energy variability of GRS 1915+105 in the chi class

2016 
We present the first quick look analysis of data from nine AstroSat's Large Area X-ray Proportional Counter (LAXPC) observations of GRS 1915+105 during 2016 March when the source had the characteristics of being in the Radio-quiet χ class. We find that a simple empirical model of a disk blackbody emission, with Comptonization and a broad Gaussian Iron line can fit the time-averaged 3–80 keV spectrum with a systematic uncertainty of 1.5% and a background flux uncertainty of 4%. A simple dead time corrected Poisson noise level spectrum matches well with the observed high-frequency power spectra till 50 kHz and as expected the data show no significant high-frequency () features. Energy dependent power spectra reveal a strong low-frequency (2–8 Hz) quasi-periodic oscillation and its harmonic along with broadband noise. The QPO frequency changes rapidly with flux (nearly 4 Hz in ~5 hr). With increasing QPO frequency, an excess noise component appears significantly in the high-energy regime ( keV). At the QPO frequencies, the time-lag as a function of energy has a non-monotonic behavior such that the lags decrease with energy till about 15–20 keV and then increase for higher energies. These first-look results benchmark the performance of LAXPC at high energies and confirms that its data can be used for more sophisticated analysis such as flux or frequency-resolved spectro-timing studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    66
    Citations
    NaN
    KQI
    []