Involvement of matrix metalloproteinase-2 in the development of medial layer vascular calcification in uremic rats.

2011 
Abstract Vascular calcification is the most important cause of cardiovascular disease in patients with chronic kidney disease (CKD). Medial layer vascular calcification, which is recognized to be an active process (i.e. the transformation of vascular smooth muscle cells into osteoblast-like cells), is common in CKD patients. We have recently reported the possibility of an interaction between elastin degradation and medial layer vascular calcification. Matrix metalloproteinase-2 (MMP-2), which induces the degradation of elastin, has been implicated in the elastic calcification in arteries of dialysis patients; however, the precise mechanisms by which elastin degradation interacts with the development of vascular calcification remain to be studied. To clarify the mechanisms by which elastin degradation is involved in the development of medial layer vascular calcification in the uremic milieu, we induced aortic medial layer calcification in 5/6 nephrectomized uremic rats (male Sprague-Dawley rats) fed a diet containing high phosphate (1.2%) and lactate (20%). After 10 weeks, the rats were euthanized for the measurement of serum chemistry profiles and histological analyses. The uremic rats showed significant increases in blood pressure, serum creatinine, phosphate, and parathyroid hormone levels compared with normal rats. Von Kossa staining showed medial layer aortic calcification in the uremic rats. In calcified lesions, thin elastic lamellae were observed by elastin staining, indicating that elastin degradation could occur in the area. Furthermore, MMP-2 expression determined by immunohistochemistry was also observed in the same area. Elastin degradation accompanied by MMP-2 expression might be involved in the development of medial layer vascular calcification in uremic rats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    16
    Citations
    NaN
    KQI
    []