Color-difference evaluation for digital images using a categorical judgment method

2013 
The CIELAB lightness and chroma values of pixels in five of the eight ISO SCID natural images were modified to produce sample images. Pairs of images were displayed on a calibrated monitor and assessed by a panel of 12 observers with normal color vision using a categorical judgment method. The experimental results showed that assuming the lightness parametric factor kL=1 to predict color differences in images, CIELAB performed better than CIEDE2000, CIE94, or CMC, which is a different result to the one found in color-difference literature for homogeneous color pairs. However, observers perceived CIELAB lightness and chroma differences in images in different ways. To fit current experimental data, a specific methodology is proposed to optimize kL in the color-difference formulas CIELAB, CIEDE2000, CIE94, and CMC. From the standardized residual sum of squares (STRESS) index, it was found that the optimized formulas, CIEDE2000(2.3:1), CIE94(3.0:1), and CMC(3.4:1), performed significantly better than their corresponding original forms with lightness parametric factor kL=1. Specifically, CIEDE2000(2.3:1) performed the best, with a satisfactory average STRESS value of 25.8, which is very similar to the 27.5 value that was found from the CIEDE2000(1:1) formula for the combined weighted dataset of homogeneous color samples employed at the development of this formula [J. Opt. Soc. Am. A25, 1828 (2008), Table 2]. However, fitting our experimental data, none of the four optimized formulas CIELAB(1.5:1), CIEDE2000(2.3:1), CIE94(3.0:1), and CMC(3.4:1) is significantly better than the others. Current results roughly agree with the recent CIE recommendation that color difference in images can be predicted by simply adopting a lightness parametric factor kL=2 in CIELAB or CIEDE2000 [CIE Publication 199:2011]. It was also found that the different contents of the five images have considerable influence on the performance of the tested color-difference formulas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    30
    Citations
    NaN
    KQI
    []