Processing of COx Molecules in CO2/O2 Gas Mixture by Dielectric Barrier Discharge: Understanding the Effect of Internal Parameters of the Discharge

2020 
Environmental pollution has become a major issue due to the rapid growth of industrial and technological developments that requires a high consumption of fossil energy. A new route of treatment of pollutant molecules bases on the use of non-equilibrium thermodynamic reactive plasmas generated by electrical discharges at atmospheric pressure to neutralize or transform toxic oxides as CO2 [1, 2, 3, 4, 5, 6]. This type of non-equilibrium reactive plasma can be used for the decontamination of gaseous effluents and is generally generated by a pulsed discharge which constitutes a chemically very active medium of low energy consumption. Our work will be based on a zero-dimensional model, to study the reduction of COx in the CO2/O2 gas mixture by dielectric barrier discharge of non-equilibrium plasma under typical operating conditions of the discharge. A model allows to calculate the temporal evolutions of chemical characteristics. The influence of certain discharge parameters such as the applied electric voltage, the gas pressure, the capacity of the dielectric, the discharge frequency and the concentration of oxygen in the gaseous mixture on the density variations of CO and CO2 compared to the initial density of CO2 in the gas mixture of the discharge have been analyzed.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []