Spectral, DFT/B3LYP and molecular docking analyses on ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate

2020 
Abstract In this paper, the compound ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate was synthesized and identified by FT-IR,1H and 13C NMR, UV–Vis. And single crystal x-ray diffraction. In addition, theoretical calculations including an optimized structure analysis, Hirshfeld surface analysis, High Occupied Molecular Orbital (HOMO)-Lowest Unoccupied Molecular Orbital (LUMO) analysis, UV–Vis. parameters with an IEFPCM solvent model, MEP-Molecular Electrostatic Potential and NLO-Non-Linear Optical properties and a molecular docking analysis were carried out. All theoretical computations were performed by the DFT/B3LYP functional and the 6–311++G(d,p) basis set in the ground state. The assignments of calculated infrared vibrational frequencies were performed using the VEDA4 software for the first time through the optimized structure’s chk*. and the experimental and theoretical data are in good agreement. In addition, molecular docking studies between ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoateand the c-MET protein (PDB ID: 5EOB) were performed by using the AutoDock Vina program. The title molecule appears to be a good inhibitor for cancer treatment due to its binding energy and ability to adhere to the active sites of the protein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []