Re-evaluation of the Activity Coefficients of Aqueous Hydrochloric Acid Solutions up to a Molality of 16.0 mol·kg−1 Using the Hückel and Pitzer Equations at Temperatures from 0 to 50 °C

2007 
The simple three-parameter Pitzer and extended Huckel equations were used for calculation of activity coefficients of aqueous hydrochloric acid at various temperatures from 0 to 50 °C up to a molality of 5.0 mol·kg−1. A more complex Huckel equation was also used at these temperatures up to a HCl molality of 16 mol·kg−1. The literature data measured by Harned and Ehlers J. Am. Chem. Soc. 54, 1350–1357 (1932) and 55, 2179–2193 (1933) and by Akerlof and Teare [J. Am. Chem. Soc. 59, 1855–1868 (1937)] on galvanic cells without a liquid junction were used in the parameter estimations for these equations. The latter data consist of sets of measurements in the temperature range 0 to 50 °C at intervals of 10 °C, and data at these temperatures were used in all of these estimations. It was observed that the estimated parameters follow very simple equations with respect to temperature. They are either constant or depend linearly on the temperature. The values for the activity coefficient parameters calculated by using these simple equations are recommended here. The suggested new parameter values were tested with all reliable cell potential and vapor pressure data available in literature for concentrated HCl solutions. New Harned cell data at 5, 15, 25, 35, and 45 °C up to a molality of 6.5 mol·kg−1 are reported and were also used in the tests. The activity coefficients obtained from the new equations were compared to those calculated by using the Pitzer equations of Holmes et al. [J. Chem. Thermodyn. 19, 863–890 (1987)] and of Saluja et al. [Can. J. Chem. 64, 1328–1335 (1986)] at various temperatures, and by using the extended Huckel equation of Hamer and Wu [J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)] at 25 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    42
    Citations
    NaN
    KQI
    []